Effect of Cross-flow Velocity on the Critical Flux of Ceramic Membrane Filtration as a Pre-treatment

Effect of Cross-flow Velocity on the Critical Flux of Ceramic Membrane Filtration as a Pre-treatment for Seawater Desalination

Zhaoliang Cui, Wenbo Peng, Yiqun Fan*, Weihong Xing, Nanping Xu

Abstract
Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a critical step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L·m-2·h-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.